Diagonais por Rui Gonçalves - O quarto momento central...
Matemática - Clube de SPM - Janeiro de 2017
Publicado a 12 de Janeiro de 2018



 


“Diagonais é uma rubrica onde se falará da aprendizagem da matemática. Serão alvo de análise os dois últimos anos do ensino secundário e as cadeiras da área científica de matemática nos dois primeiros anos dos cursos de Engenharia. Abordaremos também temas relacionados, como os programas e a metodologia seguida na aprendizagem da matemática nos cursos superiores de Engenharia.”                                      


Rui Gonçalves -  Professor de Matemática da FEUP. Membro Integrado do Laboratório de Inteligência                              Artificial e de Apoio à Decisão - LIAAD INESC TEC                                                  



Diagonais por Rui Gonçalves - O Quarto Momento Central, uma Trágica História

Matemática - Clube de SPM - Janeiro de 2017 

 

Clube de Matemática SPM

Facebook Clube SPM

Título: O quarto momento central, uma trágica história


Em cursos introdutórios de estatística lecionados nas licenciaturas e mestrados integrados cientifico-tecnológicos das universidades e politécnicos é obrigatório falar-se em estatística descritiva. O estudo de qualquer fenómeno que envolva incerteza começa pelo método estatístico que explora os dados e os descreve.

A descrição envolve o cálculo de momentos estatísticos e alguns destes estão relacionados com as características da distribuição dos dados. Por exemplo, a média e mediana são medidas de localização do centro da distribuição. O desvio padrão, a variância, o desvio absoluto médio e o range (entre outros) são medidas de dispersão absolutas. Existem ainda os coeficientes que não são momentos, mas que se exprimem como uma razão destes, por exemplo, o coeficiente de assimetria é a razão do terceiro momento central com o desvio padrão ao cubo e o coeficiente de curtose, é a razão do quarto momento central com a variância ao quadrado.

Pode o leitor interrogar-se, e os momentos de grau superior ao quarto? 

É verdade que os momentos de ordem superior ao quarto não têm interpretação descritiva e isso de deve às complicações da matemática envolvida no seu cálculo.

Considere-se o exemplo simples da soma X+Y de 2 variáveis aleatórias independentes, X e Y. Designando-se o primeiro momento ordinário, média por μ e os momentos centrais seguintes  variância, μ2 e superiores μ3  etc, obtém-se,



Mas para o quarto momento central a simplicidade desaparece e a coisa complica-se…



Se tomarmos a média de um conjunto de n variáveis aleatórias i.i.d. o valor esperado e os dois momentos centrais de ordem superior a 1 relativos à média,



Já o momento central de ordem 4 é,


Mais uma vez, a simplicidade e a interpretação são perdidas…


No que toca à estimação o panorama é semelhante. Dada uma amostra i.i.d. de n observações, X1,X2,…,Xn, os estimadores não enviesados dos principais momentos são,


A simplicidade acaba no quarto momento central pois o seu estimador é,




Os resultados apresentados mostram que a teoria nos dá bonitas e elegantes fórmulas para os 3 primeiros momentos, mas que isso não acontece para o quarto momento. 


Já antes do artigo onde se baseia este texto outros autores chamaram a atenção para a falta de interpretação da curtose e não existe uma concordância naquilo que ela mede.


Pode-se perguntar, então, porque é que andamos a medir a curtose se não a conseguimos interpretar?


Para os que querem saber mais podem consultar o artigo, Dodge, Yadolah, Rousson, Valentin (1999), The Complications of the Fourth Central Moment, The American Statistician, 53:3, 267-269. E as referências nele contidas.


Bom trabalho e até para o mês que vem.